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Fig. 1211 The star’s flux profile, which we wnsh to study,?s shown on the upper
left. It 1« blurred by the convolution with the instrumental profile, and then
. sampled through the windows W, and W,. In the o domain, the transform of the
d (0) — f (O) XwW (O) XwW (0) >< 1 (O) flux profile on the upper right is filtered by i(a), blurred by w,, and replicated by
1 2 w, to give the data transform at the lower right. The negative signs on the
amplitudes of D(A) and F(A) have been ignored.
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Fig. 12. Illustrations of (A) the convolution process as seen in both domains and (B) the simple Fourier restoration in the
~ absence of noise
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A. APPLICATION OF THE OPTIMUM FILTER
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Fig. 14. Tllustrations of (A) the noise reduction provided by the optimum filter, and (B) the resulting quiet restoration



The Optimal Wiener filter (¢) 3i(v) = f(v)xd (v)

filtered estimate of true S’ (v)

that most closely resembles the noiseless spectrum transform S’ :

JB0)-smdn = [3 v)dv
f'(v)=S"(v)+r'(v)

[ s (vFL=o (vIF + Ir(vIFle" (vIF]dv



The Optimal Wiener filter (cont.)

minimizing variance against ¢’

olls (vIFIL=o (VI + Ir'(vFle (v _
o'
(v S'(v)I
R T




need for composite

P’ (v):

- Optimal (Wiener)
+

- lOW paSS / lcl? (measured)

| N |? (extrapolated)
High (>~ 300) S/N is
required to ‘‘gain” .
over instrumental [ REEEUNN, L

resolution. g

log scale

T |S1? (deduced)

f}

Numerical Recipes, Press et al. 1993, pg 5477
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Optimal Extraction of IFU Stellar Spectra

The minimum variance extraction of a stellar spectrum at a given wavelength is:

Y w6, ) (1;,,6,,1)
WY e n

Here f is proportional to the signal per IFU element.

PSF*(r)
Zvar[counrs(i, j, L, A)]
I

with Wi j. ) =



- 1
%) = S (bsEr) 1 var counts(r 1))

r

var, (\) = Zr:var[counts(r,k)]

> PSF(r) = 1

r

(for 1D spectra see Horne, K., PASP,1988)



Case 1 - background limited observations

Now, lets us assume that the background is constant along the PSF and it follows a Poisson statistical

distribution. When the variance per pixel is dominated by the sky background we have

G® = News ~ coNstant (the number of counts per pixel). Summing over the N IFU elements (i, j) at A:

Varll,, |
Var|l |

opt

= N % Z PSF*(r) with a gaussian PSF approximation we get:
ij

Varll :
ar{l,,1 _ N 0.44

Var[l ([FWHM)’

opt ]

Example: Suppose we integrate over £3¢ and the stellar profile is sampled by 2.5 IFU elements per

FWHM. The corresponding ratio would be 2.3 (in variance) or 1.5 (in RMS).

** The corresponding ratio for slit spectroscopy is 1.7 in variance or 1.3 in RMS **



Case 2 - Negligible background and readout noise

This is the case of bright stars (flux standards for example) where source photon statistics is the major
contribution to the measurement noise. By assuming Poisson statistics, the variance of each IFU

element would be proportional to the local PSF value:

Z var[counts(i, j,I,A)] = const* PSF(r,, 91.)
!

applying this in our variance ratio expression (11) and using the normalization condition for the PSF

model one find:

Var|1

sum ]

Var| 1

opt ]
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